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1 Introduction

The Classification of Finite Simple Groups [Sol95] states that any finite simple
group is one of the following:

¢ 3 cyclic group of prime order

e an alternating groups A,, (for n > 5)

a classical linear group
e an exceptional or twisted group of Lie type

e one of 26 sporadic simple groups.

Five of the sporadic groups (My1, M1, Maa, Mas and Msy) were discovered
by Mathieu in the 1860s. The other 21 groups were discovered (or at least
predicted to exist) much more recently, in the period 1965-1974.

In this essay, we will mainly be concerned with the Mathieu groups. The
largest of the Mathieu groups, My, acts on two exceptional structures: the
S(5,8,24) Steiner system Why and the Golay code Cz4. We will examine these
structures in detail, see how they are related, and show that they are unique
up to isomorphism. The uniqueness proofs will give us some useful information
about Mj4 and examining the structure of Myy will tell us about the other
four Mathieu groups. We will be able to show that all five Mathieu groups are
simple, and we will determine their orders.

The Mathieu groups are interesting not only because they are sporadic simple
groups; they also have unusually high degrees of transitivity. We will see that
M4 and Mi2 (another Mathieu group occurring as a subgroup of May) are
5-transitive on 24 and 12 points respectively.

In the final section, we will see how the Golay code allows us to construct
another exceptional structure: the Leech lattice A. We will see three of the
more modern sporadic groups (Co;, Cos and Cos) occurring in the group of
automorphisms of A, and we will be able to determine their orders.

The main sources of information for this essay were [Con99], [Gri98], [Iva99],
[Rot84] and [DM96]. Other sources used are listed in the bibliography.

2 The S(5,8,24) Steiner system

An S(t, k,v) Steiner system (£2,S) consists of a finite set Q, together with a set
S of subsets of (2 satisfying the following conditions:

1. |9 =v
2. Each A € S has size k
3. Any set B C Q of size t is contained in exactly one A € S

The elements of €2 are called points, and the elements of S are usually called
blocks (although in the special case t = 2, they are sometimes called lines).

An automorphism of a Steiner system (€2,S) is a permutation of @ which
induces a permutation of S (that is, blocks are sent to blocks). We will be
especially interested in the automorphism group of an S(5, 8, 24) Steiner system,
as this group is the sporadic simple group May.
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2.1 Basic properties of Steiner systems

We will need some basic results about an arbitrary S(t, k,v) Steiner system
(€, ).

Lemma 2.1.1 The number of blocks containing a specified subset B C 2 of size
0 <@ <t depends only on i, and is equal to:

wenn=()/()

Proof Given a set B of size i, there are 1;:;’ t-subsets of () containing B.

Each of these t-subsets is contained in a unique block of the Steiner system,
but each block is counted once for each of its t-subsets containing B; there are
(I: : Z) such. This gives the required result. |

Let us extend the definition by setting N; = 1 for ¢ < i < k (as this gives
the number of blocks containing a set of size i, providing the set is contained in
any block at all).

Lemma 2.1.2 Suppose A C B C Q, with |A| =i, |B| = j. The number of
blocks M satisfying M N B = A is given by:

N(4,B):= Y (-1)/7N(C) 2)

ACCCB

Moreover, if B is contained in some block, then N(A, B) depends only on i and
J (so we define N; j := N(A, B) for any B contained in a block).

Proof We will prove (2) by induction on ¢t = |B — A| = j — i before showing
that N (A, B) only depends on ¢ and j.

If t =0, then B = A, and N(A,B) = N(A,A) = N(A), so (2) is true for
t=0.

Now suppose that (2) holds for some ¢t > 0. We want to show that it holds
for t+ 1. Suppose |[B—A| =t+1 > 1. Then we can find an element z € B — A.
Define B~ = B — {z} and At = AU {z}. Then |[B~ — A| = |B - A*| =t, so
by the induction hypothesis:

NA,B7)= Y (-1lc-iN(o) 3)
ACCCB-
and
N@AYB) = Y (-1 IN(e) (4)
A+CCCB

Now, N(A,B™) = N(A, B) + N(A*, B), for if L is a block, then LN B~ = A if
and only if either LN B = A* or LN B = A (accordingly as € L). Moreover,
if A C C C B then either AT CC C Bor A C C C B~ (accordingly as z € C).
Thus subtracting (4) from (3) gives:

N@AB)= ) (-1)I°IN(C) (5)

ACCCB
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Equation (2) therefore holds by induction.

We now want to show that (2) depends only on ¢ and j in the case that B
is contained in a block L. If A C C C B, N(C) is the same as N¢| (since we
know that C' is contained in the block L). The number of such subsets C of size

1 (i <1<j)is given by (g :z) Hence:
J j—i
— - 1—i
NGB =3 (§20) coim (6)
and the right hand side has no direct dependence on A or B. |

Theorem 2.1.3 (Recurrence relation for N; ;) Fori < j <k:
N;j = Nijy1 + Nip1j1 (M)

Proof Let L; be a block and choose sets A C B C Ly such that |A| =4, |B| =
j+1. Choose z € B— A, and let AT = AU{z}, B~ = B—{z}. As we remarked
earlier,

N(A,B™) = N(4, B) + N(A*, B) 8)

for if L is a block then LN B~ = A if and only if either LNB = At or LNB= A
(accordingly as x € L). The result then follows from Lemma 2.1.2. [ |

Lemma 2.1.1 allows us to calculate N; = N;; for all 4, and the recurrence
formula in Theorem 2.1.3 allows us to inductively calculate the other values of
N; ;. We can put these values in a table, called the intersection table for the
Steiner system. Note that the intersection table only depends on the parameters
(t, k,v) of the Steiner system. For example, all S(5,8,24) Steiner systems have
the intersection table given in Table 1.

N;|i=0 1 2 3 4 5 6 7 8
7=0 759

1 506 253

2 330 176 77

3 210 120 56 21

4 130 80 40 16 5

5 78 52 28 12 4 1

6 46 32 20 8 4 0 1

7 30 16 16 4 4 0 0 1

8 30 0 16 0 4 0 0 0 1

Table 1: Intersection table for a S(5,8,24) Steiner system

2.2 The projective plane of order 4

Let (A, L) be an S(2,n + 1,n% + n + 1) Steiner system: that is, A is a set of
n? + n + 1 points, and £ is a set of lines, each containing n + 1 points, such
that any two points are contained in a unique line. By Lemma 2.1.1, there are
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n + 1 lines containing each point and there are n? + n + 1 lines in total. Any
two distinct lines intersect in a unique point: if L, and Ly are distinct lines,
then certainly |L; N Ly| < 2, and if L; N Ly = (), then there are (n + 1)? lines
joining some point in L; to some point in Lo, and that is too many lines. So
(A, L) obeys the axioms for a projective geometry, and we say that (A, £) is a
projective plane of order n.

The reason why we are interested in projective planes is the following. Let
(Q,8) be an S(5,8,24) Steiner system (postponing the question of existence for
the time being). Let Y be any 3-subset of 2, and consider the Steiner system
(A, L) given by:

A=Q-Y; L={B-Y:BeSYCB} 9)

This is an S(2,5,21) Steiner system (a projective plane of order 4), called the
3-point residual of (2, S) with respect to Y. In this section, we will prove:

Theorem 2.2.1 There is a unique projective plane of order 4 (and hence, a
unique S(2,5,21) Steiner system) up to isomorphism.

The easiest examples of finite projective planes are the field planes. Let ¢
be a prime power, and let V' be a 3-dimensional vector space over F,. Let A
be the set of 1-dimensional subspaces of V. For each 2-dimensional subspace of
V, let B(W) be the set of 1-dimensional subspaces of W, and let £ be the set
of all the B(W). Then (A, £) is a projective plane of order g, usually denoted
by PG(2,q). This settles the question of existence in Theorem 2.2.1. Note that
for some n there exist projective planes of order n which are not field planes:
see [AS68] for some examples. To prove the theorem, we will need to show that
this is not the case for n = 4.

Points of PG(2,q) are usually denoted by non-zero three-dimensional row
vectors over F, (with the understanding that two points are identical if their
vectors are parallel). Lines of PG(2,q) are represented by column vectors in a
similar way. A point p lies on a line 1if and only if I"p =0

An incidence matriz M = M;; of a projective plane of order n is a matrix
where rows represent lines L; and columns represent points P; (with 1 <4,j <
n? + n + 1) and the matrix entry M;; is 1 if and only if the point P; lies on
the line L;. The incidence matrix of PG(2,4) (a projective plane of order 4) is
given in Figure 1. Observe that each row and column contains exactly 5 ‘1’s
and any two rows and columns have exactly one ‘1’ in common.

To prove Theorem 2.2.1, we will first consider a simpler Steiner system (mo-
tivated by the discussion in [DM96]). Let (€2, S) be a projective plane of order
n, and let L be one of the lines in S. We can get another Steiner system
by removing L and all of its points. Specifically, we let Q0 = Q — L and
S, ={B-L:Be€S8-{L}}. Thisis an S(2,n,n?) Steiner system: all the
blocks contain n points, there are n? points in total, and any two points of Qf,
are contained in a block of § (which is not L), and hence, in exactly one block
of S.. An S(2,n,n?) Steiner system is called a affine plane of order n.

Lemma 2.2.2 For an affine plane of order n, if L is a line and P is a point
not on L, then there is a unique line L' disjoint from L that contains P.
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-1 1 -1 -1 1
1 11 1 1
1 - -1 1 1 - - 1
- 11 1 -1 1
-1 -1 1 1 - 1
11111 : :
1 1 - 111
1 11 1 1
1 11 : 1 1
1 -1 1 -1 1
1 1 1 1 - -1
1 - - -1 - 111
1 1 -1 - 11
1 -1 1 - 11
1 1 -1 S B
1 1 1 - - 11
1 1 - 111
1 1 - 11 1
1 1 - 11 1
1 1 - -1 1 -1
i 1 1 11 1 |

Figure 1: Incidence matrix of PG(2,4)

Proof By Lemma 2.1.1, there are N1 = (n? — 1)/(n — 1) = n + 1 lines going
through P. Each line contains n points, so by the properties of the Steiner
system, there are exactly n lines which intersect L and go through P. Thus
there is exactly one line L' which goes through P but does not intersect L. W

Lemma 2.2.3 The lines of an affine plane of order n can be partitioned into
n + 1 classes, each containing n lines, such that the lines in each class are
disjoint (“parallel”).

Proof Let L be a line on the affine plane (2,S). By Lemma 2.2.2, for each
point P not on L, we can find a (unique) line L(P) which contains P but is
disjoint from L. Define:

S(L) = {L(P): P€Q—L}U{L}

The lines in S(L) are disjoint from each other by the uniqueness of L(P). Clearly
each point is contained in some line in S(L), so S(L) is a partition of Q into
parallel lines. Thus |S(L)| = n (because each line has size n, and || = n?).

Note that S(L) is the only such partition of Q into parallel lines that contains
L (by the uniqueness of L(P)). Thus the set:

S={S(L):LeS}

is the required partition of S into n + 1 classes of size n. [ ]
We will now concentrate on the case n = 4.
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Theorem 2.2.4 There is a unique affine plane of order 4 up to isomorphism.

Proof Let (2, S) be an affine plane of order 4. By Lemma 2.2.3, we can find a
partition of the 20 lines into 5 classes, each containing 4 parallel lines. Let two
of the classes be {L1, Lo, L3, L4} and {My, M5, M3, M4}, and call the remaining
lines Kl, e ;K12-

We now define a (4 x 12) matrix T = (T;;) by the rule:

TijZk ifLiﬁMkCKj (10)
Observe:

1. This is well-defined. For any 1 < 4,j < 4, the set L; N K; contains 1
point (it cannot contain more than 1, and if it contained 0, then L; and
K; would be parallel, which cannot happen because they are in different
classes). Let P be the unique point in L; N K;. Exactly one of the M}
contains P; thus there is exactly one value of k such that L; N M C Kj.

2. The columns of the matrix T are a permutation of 1,2,3,4: if T,; =
Ty; = k and a # b, then K; and M}, are two distinct lines which contain
a common 2-set ((L, U Ly) N My), which is impossible.

k1 k1
ka ko
have T;,; = k1 = T, j» and T}, = ko = T;,;+ for some 41,149, j, j'. But then
the distinct points L;, N My, and L;, N My, would both be contained in
K; and K/, which is impossible.

3. T cannot contain a minor of the form ] . If it did, then we would

By reordering the L; if necessary, we can suppose that the first column
of T is (1,2,3,4)T. In any column of T, the first two elements are different
(by observation 2 above), and there are 12 ways of choosing the elements. By
observation 3, no two columns can have the same top two elements. Thus all
12 combinations must occur, and by re-ordering the K if necessary, we can list
them in lexicographic order:

1112 2 2 3 3 3 4 4 4
T = g 3413 41 2 41 2 3 (11)
4

By repeatedly using observations 2 and 3, it is a straightforward calculation to
show that T' must have the form:

1112 2 2 3 3 3 4 4 4
2 3413 412 41 2 3
T= 34 2 413 2 4131 2 (12)
4 2 3 3 41 41 2 2 31
But T completely determines the affine plane. [ |

We are now ready to prove the uniqueness of the projective plane of order
4.



2 THE S(5,8,24) STEINER SYSTEM 8

Figure 2: Fano plane

Proof of Theorem 2.2.1. Suppose (21,S1) and (23, S2) are projective planes
of order 4. We will construct an isomorphism between them.

Choose lines Ly € 81, Lo € S». Let S; denote the affine plane obtained by
removing the line L; from S; (i = 1,2). S] and 84 are isomorphic by Theorem
2.2.4, so there is a bijection Q; — Ly — Qo — Lo.

Construct a bijection Ly — Ly as follows. For P € L1, the lines containing
P form a set of disjoint (parallel) lines in Si. Such sets of parallel lines are
preserved by the isomorphisms between affine planes, so there is a corresponding
set of parallel lines in S}. The corresponding lines in S» must meet at a single
point P’ in Ls, so we map P to P'.

By combining these two maps, we get a bijection 8 : Q; — Q5. It is clear
that 0 sends the line L, to the line Ly. All the other lines in S; comprise lines in
S together with a single point on L, and by construction of the map between
L, and L, and the isomorphism between the affine planes, this line maps to a
line in S;. Thus we have an isomorphism. |

2.3 The geometry of PG(2,4)

In this section, we study some geometric properties of PG(2,4) in preparation
for the proof of the uniqueness of the S(5,8,24) Steiner system. Firstly, we
will need some terminology. A Fano plane is a projective plane of order 2
(see Figure 2). A set of points in a projective plane of order 4 is independent
if no three of them are collinear. Indepedent 3-, 4- and 6-sets are known as
triangles, quadrangles and hyperovals respectively. Triangles and quadrangles
are sometimes ordered, in which case we have tuples (rather than sets) of points.

A double-triangle is a set of 4 points x1, 22, 3,4 Where x1, 22, x3 collinear,
and no other 3-subset collinear. An ordered double-triangle is the tuple equiva-
lent.

Lemma 2.3.1 1. PG(2,4) contains 168 hyperovals, and every quadrangle is
contained in a unique hyperoval.

2. PG(2,4) contains 360 Fano subplanes, and every quadrangle is contained
in a unique Fano subplane.

3. The point set of a Fano subplane is the symmetric difference of a hyperoval
and a line intersecting the hyperoval in two points.
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Figure 3: Some lines in PG(2,4)

Proof Consider the following construction. Let A = {a1,az,a3,a4} be any
quadrangle (there are 21 x 20 x 16 x 9/4! = 2520 such). Each pair of points
in A determines a line, and because A is an independent set, there are 6 such
lines (call them A-lines). Two A-lines have a common point outside A if and
only if they have no common point inside A; thus there are 3 points by, b, b3
outside A which are intersections of A-lines (corresponding to partitions of A
into 2-sets).

Each A-line contains 5 points, but each point of A is contained in 3 A-
lines, and the points by, be, b3 are contained in 2 A-lines each. Thus there are
6x5—4x2—-3x1 =19 points contained in some A-line. Call the remaining two
points ¢; and c¢y. The line going through ¢; and ¢2 must be {b1,ba,b3,¢1,c2}
because it must intersect each of the lines a;a; (i # j) in exactly one point (in
Figure 3).

1. The set A’ = AU {c1,c2} is a hyperoval, and by construction, it is the
unique such containing A. So every quadrangle is contained in a unique hy-
peroval, Since every hyperoval contains 6 x5/2 = 15 quadrangles, PG(2,4)
contains 2520/15 = 168 hyperovals.

2. Any Fano subplane must contain a quadrangle A. Then it must also
contain the A-lines, the intersections of the A-lines outside A (b1, ba, b3)
and the line through these intersection points ({b1, ba, b3, ¢1,¢2}). On the
other hand, the points {a1,... ,a4,b1,bs,b3} and the lines joining them
do in fact define a Fano subplane. So each quadrangle is contained in a
unique Fano subplane, and the number of Fano subplanes is 2520/7 = 360
(as each Fano subplane contains 7 quadrangles).

3. The point set {ai,as,as,a4,b1,bs, b3} of this (arbitrary) Fano subplane
is the symmetric difference of the hyperoval {a;,as,as, a4, c1,c2} and the
line {b1,ba,bs, c1,c2} (which intersects the hyperoval in two places). W

2.4 Connections between PG(2,4) and Wy,

This section is based on [Iva99], [HP85] and [DM96], using the ideas of Liineberg.
We will show how a S(5,8,24) Steiner system is related to the unique projective
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plane of order 4 (PG(2,4)). From our fairly detailed investigation of PG(2,4),
we will be able to deduce both the existence and uniqueness of the S(5,8,24)
Steiner system. This will lead to some useful information about its automor-
phism group Moy.

Suppose we have an S(5,8,24) Steiner system (2,S), and fix a 3-element
subset Y = {y1,y2,y3} of Q. Then the blocks of S can be classified by the degree
to which they intersect Y. We will call a block B € S a k-block if | BNY|=k.

Lemma 2.4.1 (2, S) contains exactly 210 0-blocks, 360 1-blocks, 168 2-blocks
and 21 3-blocks.

Proof The number of k-blocks is the element N 3 on the fourth row of the
intersection table for an S(5, 8, 24) Steiner system (Table 1 on page 4) multiplied

by (z) (because the intersection of a k-block with Y could be any of the (2)

k-subsets of V). [ |
As before, we can get a projective plane (A, £) of order 4 by letting:

A=Q-Y; L={B-Y:BeSBDY} (13)

Theorem 2.4.2 (The k-block correspondence) Let B be a block, and let
B' = BN A be the restriction of B to the projective plane.

e If B is a 3-block, then B' is a line in L.

If B is a 2-block, then B' is a hyperoval in L.

If B is a 1-block, then B' is the point set of a Fano subplane in L.

If B is a 0-block, then B' is the symmetric difference of a pair of lines in

L.
Conversely, we have:
o If Ais aline in L, then A is contained in a 3-block.
o If A is a hyperoval in L, then A is contained in a 2-block.

o If A is the point set of a Fano subplane in L, then A is contained in a
1-block.

o If A is the symmetric difference of a pair of lines in L, then A is contained
in a 0-block.

Proof Firstly, we will deal with the case where we are given a k-block B € S
(k=0,1,2,3).

e Case k = 3: this follows directly from equation (13) (the definition of £).

e Case k =2:

B’ is a set of 6 points in A. Suppose 3 points of B’ lie on a line L € L.
Then LUY is a block in & which intersects B in at least 5 points. Since
(Q,S8) is a S(5,8,24) Steiner system, we must have B = LUY. But
|[BNY| =2, a contradiction. So no three points of B’ are collinear, and
hence B’ is a hyperoval.
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Case k = 1:

B' is a set of 7 points in A. Let £’ be the set of lines in £ which meet
B’ in at least 2 points. We want to show that (B’, £') is a Fano subplane,
ie. a S(2,3,7) Steiner system. It is clear that any two points of B’ are
contained in exactly one line in £', so we only need to show that any line
of £' meets B’ in exactly 3 points. For any L € £', LUY is a block, and
any two distinct blocks in S intersect in 0, 2 or 4 points (by Table 1 on
4). Thus |B' N L]| is either 1 or 3. But by definition of £', we cannot have
|B'NL|=1. Thus |[B'NL| = 3, so B' is the point set of a Fano subplane.

Case k = 0:
B is an 8-subset of A. Consider a point P € B. P is contained in 5 lines
Ly(P),...Ls(P) in L. Each of these lines L;(P) meets B in 0, 2 or 4
points (because L;(P)UY is a block and BNY = (), and clearly it cannot
be 0 points, as P € L;(P) N B. Thus any line containing P meets B in 2
or 4 points.

There is a unique line in £ going through any two points in A, so
{Li(P)NB - {P}:1<i<5}

is a partition of B — {P}. Therefore, exactly one of the lines, say L;(P),
meets B in 4 points, and the other 4 lines (L2 (P),. .., Ls(P)) meet B in
2 points.

Now, let ) be any point in B — L;(P). By the above argument, there is
a unique line Ly (@) containing @ such that |L;(Q) N B| = 4.

Clearly Lq1(P) # L1(Q), so they must meet at a single point R. This
point R is on two lines, each containing 4 points of B, but if R € B, then
there can only be one such line (namely L;(R)). So R ¢ B, and hence by
counting points, L1 (P) A L1(Q) = B. Thus B is the symmetric difference
of two lines.

Conversely, we will show that the correspondence is 1-1 by counting each of
the sets.

Case k = 3. There are 21 lines in £ and 21 3-blocks.
Case k = 2. There are 168 hyperovals in £ and 168 2-blocks.
Case k = 1. There are 360 Fano subplanes in £ and 360 1-blocks.

Case k = 0. There are 21 x 20/2 = 210 unordered pairs of lines in A, and
different pairs of lines give rise to different symmetric differences. Thus
there are 210 sets which are the symmetric difference of two lines of L,
and there are 210 0-blocks. |

The correspondence indicates that we should expect hyperovals and Fano
subplanes to be important when trying to extend PG(2,4) to an S(5,8,24)
Steiner system.

Define the following sets for i = 1,2, 3.

H; = {ovals H € L : y; ¢ the unique block containing H} (14)
F; = {Fano subplane F' € L : y; € the unique block containing F'} (15)
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We call two hyperovals (or two Fano subplanes) equivalent if they are both in
H; (or both in F;) for some i. This is an equivalence relation, because the sets
H; partition the set of hyperovals, and the sets F; partition the set of Fano
subplanes. In fact, two hyperovals (or Fano subplanes) are equivalent if and
only the blocks containing them have the same intersection with Y.

From the intersection table (Table 1 on page 4) and the k-block correspon-
dence (Theorem 2.4.2), we know that each H; contains 56 hyperovals and each
F; contains 120 Fano subplanes.

The next two lemmas are easy but highly significant, as they show that
the classes of hyperovals and Fano subplanes are dependent on the geometry of
PG(2,4) rather than the geometry of the S(5,8,24) Steiner system. This ob-
servation will be crucial when we prove the uniqueness of the S(5,8,24) Steiner
system.

Lemma 2.4.3 Two hyperovals Hy and Hs are equivalent if and only if | HyN Hs)|
1S even.

Proof Let O; be the unique block containing H; (i = 1,2): such exists by
Theorem 242) Then HHNHy, =01 N0y —Y.

Suppose H; and H, are equivalent. Then |Hq N Hy| = |01 N O2| — 2, which
is even by the intersection triangle for an S(5,8,24) Steiner system.

Conversely, suppose |Hy N Ha| is even. Then |O; N O2 — Y| is even, and
since |01 N O4| is even (by the intersection table), so is |01 N 02 NY|. But O
and O must have at least one point of ¥ in common (because |Y| = 3), so
[O1NO2NY|=2. Thus O1 NY =02, NY,ie H; and Hy are equivalent. W

Lemma 2.4.4 Two Fano subplanes Fy and Fy are equivalent if and only if
|F1 N Fgl s odd.

Proof This proof is virtually the same as that of Lemma 2.4.3. Let O; be
the unique block containing F; (i = 1,2: such exists by Theorem 2.4.2). So
FFNF,=0,Nn0;-Y.

Suppose Fi and F; are equivalent. Then |F} N Fy| = |01 N O3] — 1, whence
|F1 N F2| is odd.

Conversely, suppose |Fi N F3| is odd. Then |01 N O2 NY| is odd. The size
cannot be 3, so it must be 1. Thus F; and F5, are equivalent. [ |

Theorem 2.4.5 An S(5,8,24) Steiner system (if it exists) is unique up to iso-
morphism.

Proof Any S(5,8,24) Steiner system must be built up from a projective plane
of order 4 (unique up to isomorphism) with blocks as described above. By The-
orem 2.4.2 and Lemmas 2.4.3 and 2.4.4, the nature of these blocks is determined
(except for relabelling of the three extra points) by the geometry of PG(2,4),
so there is essentially only one way to proceed. Thus any two S(5, 8,24) Steiner
systems are isomorphic. |

We have still not shown that an S(5,8,24) Steiner system exists at all, but
we know quite a lot about what such a Steiner system must look like.
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2.5 Groups acting on PG(2,4)

We have seen that, given an S(5, 8,24) Steiner system, the hyperovals and Fano
subplanes in a residual projective plane of order 4 fall into 3 classes. In this
section, we will see how this can occur without reference to an S(5, 8, 24) Steiner
system: it turns out that the 3 classes are orbits under the action of the group
PSL3(4).

Since there is only one projective plane of order 4, we will use the standard
co-ordinate representation of the field plane PG(2,4).

The group GL3(4) of non-singular 3 x 3 matrices over F, acts on PG(2,4)
in the obvious fashion. The action is not faithful; to get a faithful group action,
we take instead the group PGL3(4) = GL3(4)/Z, where Z = {kI : k € F}}.
PGL3(4) has a subgroup PSL3(4) obtained by taking only matrices of deter-
minant 1. Since 2® =1 for all z € F}, we have that PSL3(4) = SL3(4)/Z.

Lemma 2.5.1 For any prime power q, PGL3(q) is transitive on ordered quad-
rangles in PG(2,q).

Proof Let Q = (P, P2, P;, P;) be an ordered quadrangle in PG(2,q), where
P; = [(pi1,pi2,pi3)]- It is sufficient to show that element of PGL3(q) sends
the standard quadrangle S; = {(1,0,0)), S = ((0,1,0)), S3 = ((0,0,1)), S4 =
((1,1,1)) to Q.

The matrix
P11 P21 P31
A= [pi2 p22 p32
P13 P23 P33

is non-singular, for if there were a vector x # 0 such that Ax = 0, then (x)
would represent a line containing Py, P> and P3, which is impossible as @) is an
(ordered) quadrangle.

Since A is non-singular, there exists a vector y = (yi,¥2,y3)' such that
Ay = (pa1,pa2,p43)- If any of the y; were zero, then three points of the standard
quadrangle would lie in a two-dimensional subspace of ]Fg, which is not the case.
Therefore all the y; are non-zero. Thus the image of the non-singular matrix:

Y1P11 Y2P21  Y3Psi
B = |yip12 y2p22  Ys3ps2
YipP13 Y2023 Y3P33

in PGL3(4) sends S; to P;. |

Lemma 2.5.2 PSL3(4) has 3 equally-sized orbits on quadrangles.

Proof Consider the standard quadrangle

Q@ = {{(1,0,0)),((0,1,0)),((0,0,1)), (1,1, 1)} };

there is no real loss of generality here.

We can consider () as a quadrangle in either PG(2,4) or PG(2,2). Let K4
and K, denote the stabilizers of ) in PGL3(4) and PGL3(2) respectively. It
is clear that K4 > K». Note that by Lemma 2.5.1, PGL3(4) is transitive on
ordered quadrangles in PG(2,4), so K, is 4-transitive on the points of ). Since
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the only element of PGL3(4) that fixes an ordered quadrangle is the identity,
we see Ky = S;. By exactly the same argument, we get Ko = Sy, and so
K4 = K,. But note that all matrices in GL3(2) have determinant 1 (because
we are working over Iy ), so we must have K4y C PSL3(4). In other words, the
stabilizer of ) in PSL3(4) is K.

So, by the Orbit-Stabilizer Theorem, the size of the orbit of Q under PSL3(4)
is |PSL3(4)|/|K4| = 20160/24 = 840. But there are 3 times as many (2520) in
the whole of PG(2,4). |

Lemma 2.5.3 If H is a hyperoval, then all the quadrangles contained in H are
in the same PSL3(4)-orbit.

Proof Let K be the stabilizer of the hyperoval H in PGL3(4). PGL3(4) (and
therefore K) is transitive on the ordered quadrangles contained in H (there are
6-5-4-3 of them), and the subgroup that fixes an ordered quadrangle is trivial.
Every quadrangle is in a unique oval, so K is 4-transitive on the 6 points of H
with order 6-5-4-3. So K must act on H like Ag. Now K' = PSL3;(4)N K is
a normal subgroup of K, but K = Ag is simple, so K' = K or K = 1.

If K' =1, then only the identity in PSL3(4) fixes H, so H has |PSL3(4)| =
20160 images under PSL3(4), which is impossible, as there are only 168 hyper-
ovals. Thus K' = K, so PSL3(4) is transitive on the quadrangles contained in
H. [ |

Lemma 2.5.4 If F is o Fano subplane, then all the quadrangles in F are in
the same PSL3(4)-orbit.

Proof This is basically the same proof as for Lemma 2.5.3, except that the
subgroup fixing a Fano subplane is isomorphic to the simple group PGL3(2). B

Lemma 2.5.5 PSL3(4) is transitive on ordered triangles and ordered double-
triangles.

Proof The stabilizer of the ordered triangle

((1,0,0)),((0,1,0)),((0,0,1))

in PSL3(4) is induced by the subgroup of diagonal matrices in SL3(4). This
stabilizer has size 3, so the size of the orbit under PSL3(4) is 20160/3 = 6720 =
21 x 20 x 16, which is the number of ordered triangles.

The stabilizer of the ordered double-triangle

((1,0,0)),((1,1,0)),{(0,1,0)),{(0,0,1))

in PSL3(4) is trivial, so the size of the orbit is 20160/1 = 21 x 20 x 3 x 16,
which is the number of ordered double-triangles. |

Lemma 2.5.6 PSL3(4) has 8 orbits on hyperovals, and each triangle is in
exactly one hyperoval of each orbit.
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Proof We have shown that there are 3 orbits for quadrangles, and all the
quadrangles for a hyperoval are in the same orbit. So there are 3 orbits for hy-
perovals. Since PSL3(4) is transitive on triangles, each triangle is in at least one
hyperoval for each orbit. But each triangle is contained in 9 quadrangles, each
quadrangle is contained in exactly one hyperoval, and each hyperoval contains
3 quadrangles containing a particular triangle. Thus each triangle is contained
in exactly 3 hyperovals, and so exactly one from each orbit. |

Lemma 2.5.7 PSL3(4) has 3 orbits on Fano subplanes, and each double tri-
angle is one Fano subplane of each orbit.

Proof This is basically the same as Lemma 2.5.6. We can see that there are
3 orbits for Fano subplanes, and it is possible to show that each double triangle
is contained in exactly three Fano subplanes. |

2.6 Construction of a S(5,8,24) Steiner system

We now have enough information to construct an S(5,8,24) Steiner system.

Take a projective plane (A, L) of order 4. The set of points of our new
Steiner system is = AUY, where Y = {001, 002,003} and ANY = .

Let the 3 PSL3(4)-orbits of quadrangles be denoted Q; for 1 < i < 3. By
Lemmas 2.5.3 and 2.5.4, we can define H; to be the set of those hyperovals whose
quadrangles are in Q;, and similarly, F; to be the set of those Fano subplanes
whose quadrangles are in Q;.

Then, motivated by the k-block correspondence, we define the blocks of our
new Steiner system to be all sets of the following four types:

e LUY for lines L € £ (3-blocks).
e HUY — {oo;} for hyperovals H € H;, i = 1,2,3 (2-blocks).
e F'U{o0;} for Fano subplanes F € F;, i =1,2,3 (1-blocks).
e L AL for distinct lines L, L' € £ (0-blocks).

Let S be the set of blocks.

Theorem 2.6.1 (Q2,S) is an S(5,8,24) Steiner system.

Proof There are 24 points in 2, and each block of & contains 8 points. We
need to show that any 5-subset F' of ) is contained in exactly one block. We
will start by showing that F' is contained in some block B.

Let Y=FNY,P' =FNA. Let L € £ be a line of maximal intersection
with P’ (there may be several such lines).

Without loss of generality, we may suppose that the points of Y’ are oo;
(1 <i<|Y']). There are four cases to consider:

L [Y'| =3, V" = {oo1, 002,003}, |P'| = 2
We have P! C L, so take B=Y U L.
2. [Y'|=2,Y" = {oo1, 00}, |P'| = 3
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o If [P"NL| =3, then P' C L, so take B=Y UL.

e Otherwise, P’ is a triangle. By Lemma 2.5.6, there is a hyperoval
H € Hjs containing this triangle. Then take B = H U {001, 002}.

3. [V'|=1,Y" = {oo1},|P| =4

o If [P'NL| =4, then P' C L, so take B=Y UL.

e If |P'NL| = 3, then P’ is a double triangle. By Lemma 2.5.7, there is
a Fano subplane F' € F; containing this double triangle. Then take

e Otherwise, no three of the P; are collinear, i.e. the P; form a quad-
rangle Q. If @ € Qq, then @ is in a Fano subplane F' € F;, and we
can take B = F'U {oo1}. If @ is in one of the other PSL3(4) orbits
(say Q2), then @ is in a unique hyperoval H € Hy, and we can take
B=HU {001,003}.

4 [Y'|=0,Y' =0, |P|=5
Write P' = {Py,..., Ps}, with the points on P' N L listed first.

o If [P"NL| =5, then P' C L, so take B=Y UL.

o If |P" N L| = 4, then let P} be the fifth point on L (ie. L =
{P1,...,Ps,P.}), and let M be the line between P; and P;. Then
take B=LA M.

e If [P'NL| = 3, then let M be the line joining Py and Ps. If L and M
meet at a point in P’, say Py, then {P», Ps, Py, P5} is a quadrangle,
contained in a Fano subplane F' € F;, and we can take B = FU{o0;}.

Otherwise, L and M meet at a point not in P’; in which case, take
B=LAM.

e Otherwise, no three of the P; are collinear. Then there is a hyperoval
H € H; (for some 1 <4 < 3) containing P'. Then take B=HUY —

{o0i}.

So every 5-set is contained in some block. On the other hand, there are
21+168+4360+(21x20/2) = 759 blocks in S, so the number of 5-sets contained in

some block (counting multiplicity) is 759 x (?) = 42504. Since this is precisely
254 (the number of 5-sets in ), we must have counted each 5-set exactly

once. It follows that each every 5-set is contained in a unique block of S. W

3 The Golay code

In this section, we will introduce another one of the main characters in our sory:
the extended binary Golay code.
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3.1 Linear codes

We will start by introducing some terminology from coding theory. Let [, be
the finite field with ¢ elements, where ¢ is a prime power. A g-ary linear code of
length n is a vector subspace of Fy . The dimension of the subspace is the rank of
the code. Vectors in the subspace are called codewords. Individual co-ordinates
in a codeword are called the letters of the codeword.

The weight w(z) of a codeword z is the number of non-zero letters in the
codeword, and the Hamming distance d(z,y) between two codewords z and y
is w(xz — y). The minimum distance or minimum weight d(X) of a linear code
X is given by the smallest non-zero value of w(z) for a codeword z € X.

A g-ary linear code of length n, rank k and minimum weight d is said to be a
g-ary [n, k,d] code, and n, k, d are said to be parameters of the code. There are
restrictions on the code parameters. By a sphere-packing argument, Hamming
showed that the following inequality holds for a g-ary [n, k, d] code:

195 ]
) (”) < gt (16)
i=0

A code which attains equality in (16) is said to be a perfect code. Very few
perfect codes exist. Aside from trivial examples, the only perfect codes are the
so-called Hamming codes with parametersn = (¢! —1)/(¢—1),k=n—1,d=3
for integers | > 3, ¢ > 2, some other codes with the same parameters as the
Hamming codes, the binary [23, 11, 7] Golay code C23 and a ternary [11, 6, 5]
code Cy1. (This result is proved in [MS77] chapter 6, section 10.) In the next
section, we will construct a binary [24,12,8] code C24; removing the last letter
from each codeword of Ca4 gives us Cas.

3.2 Construction of the Golay code Cyy

Let P be the projective line over the finite field Fy3. We will make the identifi-
cation P = a5 U {00}, where 0o obeys the usual rules (0o x a = 00, a/0 = 00
and a/oco =0 for a # 0, and a + co = oo for all a € P).

We denote the set of subsets of P by P(P). This is a Fy-vector space with
addition represented by symmetric difference and scalar multiplication by the
rules 1A = A,04 = ) for A C P. We will construct Ca4 as a subspace of P(P).

The quadratic residues of Fa3 are given by the elements of:

Q=1{1,23,4,6,8,9,12,13,16,18} (17)
and the quadratic non-residues are given by the elements of:
N ={5,7,10,11,14,15,17,19, 20, 21, 22} (18)
For a € Fy3, define:
Nyo={n+alne N}U{a} =(NU{0})+a (19)

and let B be the set of all the N,, together with P. Let C24 be the code generated
by the sets of B.
We are aiming to prove:
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Theorem 3.2.1 The extended binary Golay code Co4 is a binary linear [24,12, 8]
code.

To do this, we work with a group acting on Cy4. Let M be the group of
Moébius transformations:

ar+b

m, ad—chQ

on P. M isisomorphic to the finite group PSL»(23). We pick out three elements
of M:
et:z—xz+1,
(012345678910111213141516 17 18 19 20 21 22)(oc0)

e s:x—2x
(0)(0)(124816918133612)(5102017 11222119157 14)
e Tz —1/x
(000)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)(8 20)(10 16)(12 21)(14 18)

Lemma 3.2.2 For the group M defined above:
1. M acts transitively on the 2-subsets of P.
2. M acts transitively on the 3-subsets of P.
3. M has order 24 x 23 x 11.

4. M is generated by the elements s, t, T.

Proof

1. Firstly we show that the point-stabilizer M, of co acts transitively on the
2-subsets of Fo3. Suppose we have a, b, ¢, d in Fa3 (a # b, ¢ # d) and we
want to find an element of M., which maps {a,b} to {c¢,d}. Assume that
(¢ —d)/(a —b) € Q; if not, then swap a and b. The group M, consists
of transformations x — gz + d with ¢ € @, d € Fa3, so we want to find
q € Q, r € Fy3 such that

aq+1r=c; bg+r=d

Subtracting the equations gives ¢ = (¢ — d)/(a — b) € Q. We then set
r = c— aq and it is easily seen that z — gz + d maps {a, b} to {c,d}.

Since 7 does not fix 0o, we see that M acts transitively on the 2-subsets
of P.

2. Let M act on the 3-subsets of P. Any orbit under this action contains a
subset {0, 00,a} with a € Fa3, because M is transitive on the 2-subsets of
P. Under the action of (s), this subset maps to 11 other subsets of the
same form, accordingly as a € ) or a € N. Thus there are at most 2
orbits under the action of M on the 3-subsets of P. But the element 7
stabilises {0, 00} and transposes @ and N, so there is only one orbit.
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3. Let T = (t), S = (s). T is a cyclic group of order 23 acting regularly on

Fs3, and S is a cyclic group of order 11 acting on @ (or N).

T and S are clearly subgroups of M, and in fact T < M. Indeed, if
g :x — gx + d then for any n:

g7't"g(@) = (((gz +d) +n) —d)/g =z +n/q

so g~'t"g € T. Moreover, S = M0y, the elementwise stabilizer of 0
and oco. Since T is a normal subgroup of M, acting regularly on Fa3,
we deduce that M, is a split extension (a semi-direct product) of T' by
M0y = S. In particular, |M| = |T||S| = 23 x 11.

Since M is transitive on P, by the Orbit-Stabilizer Theorem:

|M| = |Mu||oo™| = 23 x 11 x 24

. We have proved that M, is the semi-direct product of T by S, so M

is generated by s and ¢. By adding the element 7 we get a group which
is transitive on the 2-subsets of P with order 23 x 11 x 24 as above. So
(s,t,7) is a subgroup of M with the same order as M, which proves that
M is generated by s, t and 7. |

Lemma 3.2.3 Fora € Fo3, Nyt = Nyy1 and Nys = Na,.

Proof The statement for ¢ is clear. Since 2 is a quadratic residue in Fag,
Nos = Ny, and so Ns = (Ng +a)s = Ng + 2a = Na,. [ ]

Lemma 3.2.4 For any distinct a,b € Fa3, [N, N Np| = 6. In particular, the
intersection of any two elements of B is even.

Proof By Lemma 3.2.3, the actions of s and ¢ on {N,|a € Fa3} mimic their
actions on Fa3. In particular, by transitivity on 2-subsets, we can find an element
g € M such that {N,, Ny}g = {No, N1}, and in particular, (N,NNp)g = NoNNy.

Now:
No ={0,5,7,10,11,14,15,17,19,20, 21, 22}
and
N ={0,1,6,8,11,12,15,16, 18, 20, 21,22}
SO
Non Ny ={0,11,15, 20,21, 22}
Thus |N, N Ny| = 6. |

Theorem 3.2.5 Ca4 is preserved by the group M.



3 THE GOLAY CODE 20

Proof Because M is generated by s, t and 7, and Ca4 is generated by P and
{Ng|a € Fa3}, it is sufficient to show that s, t and 7 send P and each N, to
elements of Co4. It is obvious that nothing happens to P, and Lemma 3.2.3 has
dealt with the actions of s and ¢. Thus it only remains to see how 7 acts on N,
for a € ]F23 .

The elements of N,7 are m = n’_:a for n € N. We have:

1 n 20
m‘*‘a—m (20)

e Suppose a € Q. Then m € N_y, if and only if m + % € Ny, if and only

if n_’f_a € No, if and only if m € No. So No,7 € N_y,, A No A P. But the

two sets both contain 12 elements, so must be equal.

e Suppose a € N. Then m € N_,/, if and only if m ¢ Ny. So N,7 C
N_y /4 A No. But the two sets both contain 12 elements, so must be equal.

e Otherwise, a = 0, and it is clear that Ng7 = P A Ny € Coy4.

So N,7 € Co4. ||
We are now ready to prove that Ca4 is a [24, 12, 8] code.

Proof of 3.2.1. Tt is clear that Ca4 has length 24; we need to show (1) that it
has rank 12, and (2) that it has minimum distance 8.

1. The cyclic group T of order 23 acts on the quotient @ = Cyq/{(P). All
the orbits of this action have size 23, except the orbit of the zero vector
(which has size 1), so 23 divides |@| — 1. But @ = 2™ for some m, and
the least m for which 23 divides 2™ — 1 is given by m = 11. So the rank
of Cay4 is at least m +1 = 12.

On the other hand, Cy4 cannot have rank greater than 12. By Lemma
3.2.4, the intersection of any two elements of B is even. We introduce a
non-singular inner product (x,*) : F2* x F2* — F,:

(A, B) = 0 %f |AN B| ?s even (21)
1 if |AN B| is odd

With respect to this inner product, Co4 is contained in its own dual, and
so cannot have rank greater than 12. (This also implies that all codewords
in Co4 have even weight).

So the rank of Coy4 is exactly 12.

2. The minimum distance of Ca4 is at most 8, because Ny € Ca4 has weight 8.
To show that the minimum distance is at least 8, it suffices to show that
C24 contains no non-zero words of weight less than 8. In fact, it suffices to
show that Co4 contains no words of weight 2, 4 or 6, because we showed
above that all words in Cy4 have even weight.

e (o4 contains no word of weight 2.

Suppose Ca4 contained a set of size 2. The group M is transitive
on the 2-subsets of P, and by Theorem 3.2.5, M preserves Ca4. SO
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Co4 contains all 2-subsets of P, and hence all the even subsets of P
(there are 223 of them). But the dimension of Cy4 is only 12, so this
is impossible.

e (o4 contains no word of weight 4.
Suppose Ca4 contained a set D of size 4. By Lemma 3.2.2(2), M
is transitive on the 3-subsets of P, so we may assume that D has
the form {0,1,a,00} with a € Fo3. Let E = {0,1,00} C D. There
are (24 x 23 x 22)/(3 x 2 x 1) 3-subsets of P, and the group M has
order 24 x 23 x 11 by Lemma 3.2.2(3). Thus, by the Orbit-Stabilizer
Theorem, the setwise stabilizer of E has order 3. This stabilizer must
be cyclic of order 3, generated by an element g. If g is expressed as
the product of disjoint cycles, each cycle must be a 3-cycle or a fixed
point, and so the number of fixed points must be divisible by 3.
Suppose g has 3 or more fixed points. Then because M is transitive
on 3-subsets of P, there is a non-trivial element h € M which fixes
0, 1 and oo. Then h is an element of M, = S which fixes 1, and
the only such element is the identity.
Thus g has no fixed points, and in particular, g does not fix a. Then
DADg = {a,ag}is an element of C24 of size 2, which we have already
shown is impossible.

e (o4 contains no word of weight 6.

Suppose Cs4 contained a set D of size 6. Let E and F be two 3-
element subsets of D. Because M is transitive on 3-subsets of P,
there is a ¢ € M such that Eg = F. Thus DgnN D D F and must
be of even size. It cannot have size 2, as |F| > 2. It cannot have
size 4, or Dg A D € Ca4 would have size (6 — 4) + (6 — 4) = 4, which
is impossible (no element of C4 has weight 4). So Dg N D must
have size 6, so Dg = D. So the setwise stabilizer Mp of D contains
g. But there exists such a g for any 3-subsets E, F' of D, so the
setwise stabilizer of D acts transitively on the 3-subsets of D. There
are (6 x 5 x 4)/(3 x 2 x 1) = 20 such 3-subsets, and by the Orbit-
Stabilizer theorem, 20 | |[Mp|. But Mp < M and |M| = 24 x23 x 11,
which is not divisible by 20, contradicting Lagrange’s Theorem.

So the minimum distance is 8. [ |

3.3 An outline of the MOG

There are many other constructions of the Golay code. One of the most useful
for computation is the MOG (Miracle Octad Generator) of R. T. Curtis. The
MOG is described in detail in chapter 11 of [CS99] and in [Gri98]. Here we give
a brief outline, without going into detailed calculations or proofs.

Let Fy = {0,1,w,@} be the field of 4 elements with addition and multipli-
cation tables given by Table 2. We define a code of length 6 over Fy, called the
hezacode H, by:

H={(a,b,c,a+b+c,ab+bw+c,aw+bw+c):a,bce€Fy} (22)

It is clear that H is a 3-dimensional linear code. Codewords in H are called
hexacodewords.
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+/0 1 w @ <11 & &
00 1 w w T T1 o o
1|1 0 @w w —

_ wlw w 1
wlw w 0 1 I
_ | w|lw 1 w
w|lw w 1 0

Table 2: Addition and multiplication in [,

It is straightforward to check whether a given 6-tuple is a hexacodeword.
Firstly, the 6-tuple must obey the shape rule. Split the 6 co-ordinates into 3
couples. Up to permuting the 3 couples or swapping the two elements of a
couple, the 6-tuple must be of one of the following forms:

0000 00, ababab, 0a Oa be, aa bbcc, 00 aa aa

where a, b and c are distinct non-zero elements of Fy. Secondly, the 6-tuple must
obey the sign rule. Associate each of the 3 couples with one of the numbers
{-1,0,+1} as follows:

e +1 couples: 01, Ow, 0w, 1w, ww, w1
e —1 couples: 10, w0, @0, wl, ww, 1w
e 0 couples: 00, 11, ww, ww

A 6-tuple obeys the sign rule if either all the signs are 0, or the product of the
signs is +1. A 6-tuple is a hexacodeword if it obeys the shape and sign rules.
For example, it is easily seen that the 6-tuple Ow 1w w0 obeys both the shape
and sign rules, so it is a hexacodeword.

A MOG array is a 4 x 6 binary matrix. Any column of a MOG array is
associated with an element of Fy via the map

— b+ we+ wd, a,b,c,d € F,

O o

This element of Fy is the score of the column. The count of any row or column
of a MOG array is the number of non-zero digits it contains.

Definition 3.3.1 A MOG codeword is a MOG array such that the scores of
the array form a hexacodeword, and such that the count of each column and the
top row are either all even or all odd.

Conway in [CS99] verifies that that the MOG codewords form a [24,12, 8]
code. One of the virtues of the MOG is that it is easy to check whether a given
array is a codeword.

For example, the array:

O = OO
_—— O
o= OO
[ = S )

O =

SO O
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has score 6-tuple Ow 1o w0, which is a hexacodeword (as we saw above) and the
counts on the columns and the top row are all odd. Thus this MOG array is a
codeword. On the other hand, the array:

11010 (1)1
1{1(1{0]0]0
1{0(0]0]0]|1
1{170(0]1]0

has score 6-tuple Ow 10 ww, which is not a hexacodeword, so even though the
counts on the columns and the top row have matching parities, this MOG array
is not a codeword.

In section 4.1, we will see that the octads of a Golay code give an S(5,8,24)
Steiner system, and indeed, it is fairly easy to find the unique MOG octad
containing a given 5-set by taking advantage of the error-correcting properties
of the hexacode. The details are in chapter 11 of [CS99].

4 The relation Wy ~ Coy

There is a strong connection between the S(5,8,24) Steiner system Wh4 and the
extended binary Golay code Ca4. In this section, we will exhibit connections in
both directions, in preparation for our definition of the large Mathieu groups in
section 5. Along the way, we will see some nice properties of both structures.

4.1 The 5(5,8,24) Steiner system from a Golay code

Let Ca4 be any [24, 12, 8] binary code on the set €2 (i.e. C24 € P(2) and [Q| = 24).
An octad is a codeword of Cyy with weight 8. In this section, we will show that
the octads of Cay form an S(5,8,24) Steiner system.

Let C3, be the set of cosets of Cay in P(Q), and let C3,(k) be the set of all
cosets of Co4 which contain a k-subset of .

Lemma 4.1.1 C3, is the disjoint union of the C54(i) for 0 < i <4, and more-
over:

24 -
. ifi=0,1,20r3
* [ ?
ORI (23)
6 ifi=4
1)/

Proof We make the following elementary observation: If A and B are distinct
subsets of ) contained in the same coset of Ca4, then A+ B has weight at least 8
(as it is contained in Ca4, but is non-zero). The remark has these consequences:

1. If 0 <4 < 3, and C is a coset in C3,(i), then C contains a single i-subset
of ©, and no j-subsets (for 0 < j < 4,5 # i). Every such i-subset is
contained in some coset of C34(i), so the number |C3,(¢)| of such cosets is

exactly (2i4> .
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2. If C is a coset in C3,(4), then C contains at most 6 other 4-subsets of
(because each the 4-subsets must be pairwise disjoint in order to get a
codeword of weight 8), and no i-subsets for ¢ < 4. Thus

> (3) /s (24

3. The C34(7) for 0 <4 < 4 are disjoint (if C were a coset in C;,(¢) and C3,(4)
for 0 <1i < j <4, then C would contain both an i-subset and a j-subset,
which we have already seen is impossible).

However, note that

24 24 24 24 .
1+<1)+(2>+(3>+<4)/6=212=|CQ4| (25)
so that the inequality (24) for |C3,(4)| must be an equality, and C3, must be the
(disjoint) union of the C3,(i) for 0 < i < 4. [ |

Corollary 4.1.2 (Existence of sextets) For any j-subset E of Q, there ex-
ists a partition of Q) into six 4-sets containing E such that the union of any two
is an octad (such a partition is known as a sextet).

Proof The 4-sets in a coset in C3,(4) must be pairwise disjoint, but no coset
in C3,(4) can contain more than 6 pairwise disjoint 4-sets (because 24 = 4 x 6).

24
Since there are only 4) / 6 cosets in C34(4), each must contain exactly 6

pairwise disjoint 4-sets.

Let Ey = E be any 4-subset of 2, and let C be the coset containing E. Then
C € C34(4), so C contains 5 other 4-sets Es, ... , Eg such that the E; (1 <i < 6)
are pairwise disjoint. This gives us a partition of 2 into 4-sets. Since they are
disjoint, the union of any two is equal to the sum of any two, and since each of
the 4-sets is in C' (a coset of Ca4), the sum of any two must be an 8-set in Cay,
that is, an octad. |

Theorem 4.1.3 The octads of C24 form an S(5,8,24) Steiner system.

Proof Let F be a 5-subset of ). We need to show that F' is contained in a
unique codeword of weight 8 in Cay4.

Existence: choose a 4-subset E; of F, and form the sextet {E1, ... , Eg}. One
of these 4-subsets (say E2) must contain the point F' — E;. Then by Corollary
4.1.2, E; + E, is an octad containing F'.

Uniqueness: suppose F' were contained in distinct octads A, B € C24. Then
A + B would be a non-empty set of size at most 6, which is impossible. |

4.2 The Golay code from an S(5,8,24) Steiner system

In this section we will go in the other direction, and show that the span of the
blocks of S(5,8,24) is a [24, 12, 8] binary code. This will allow us to deduce the
uniqueness of the Golay code (that is, C24 is the only [24,12, 8] linear code up
to isomorphism).
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Weight | Number of codewords
0 1

8 759

12 2576

16 759

24 1

Table 3: Weight distribution of G

Let G be the vector subspace of P(2) spanned by the blocks in Way.

We will investigate the weight distribution of G: that is, we will determine
(for each k) the number of codewords of weight k.

For this section, we will call codewords of weight 8 in G octads, and codewords
of weight 12 duodecads.

Lemma 4.2.1 If A, B € G then |AN B| is even.

Proof Consider the non-singular inner product
(A,B) = |ANB| (mod 2)

. By Table 1 on page 4, the intersection of two blocks of Ws4 must be even.
Thus the inner product of any two octads is 0. Since the octads span G, the
inner product of any two elements of G must be 0. |

Theorem 4.2.2 G has dimension 12, and has weight distribution given in Table

3.

Proof We will prove this in several stages. In this proof, we will call a
duodecad normal if it can be expressed as the sum of two octads.

1. Claim: A normal duodecad can be expressed as the sum of two octads in
at most 132 ways (respecting order)

Let D be a normal duodecad, and let F' be a 5-subset of D. Because Wy
is an S(5, 8, 24) Steiner system, F is contained in a unique octad O;. Now
|O1 N D| must be even, and it must be at least 5, because ' C O; N D.
So |01 N D| is either 6 or 8. If |O; N D| = 8§, then |01 C D|, and the
complement for O; in D is not an octad. However, if |01 N D| = 6, then
0> = 01 + D is the unique octad satisfying O1 + Oy = D.

Let K be the number of octads contained in D. Then the number of 5-
subsets which give rise to an ordered octad decomposition for D is given

(2)-()

(At the moment, all we know about K is that it is non-negative, but we
will later see that K = 0.) For a decomposition D = O; + Oz, we have
that |[D N O1| = 6, so there are 6 ways of choosing a 5-subset F' to give
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any particular ordered decomposition into octads. Thus, the number of
ordered pairs (O, 03) of octads such that O; + Oy = D is given by:

(3)-x @ o= (5) fo=re2 e

2. Claim: There are 340032 ways of choosing octads Oy, Oy such that O;+0,
is a duodecad

For octads Oy and O3, O1 + O3 is a duodecad if and only if |01 N 02| = 2.
The number of octads which have an intersection of size 2 with a given

(g) Ny g, so the number of ordered pairs (01, O2) such

that O; + Oz is a duodecad is given by

fixed octad O, is

Noo (g) Nag = 340032 27)

3. Claim: There are at least 2576 normal duodecads.

Given a normal duodecad D, there are at most 132 ways of writing it as
the sum of two octads. However, there are 340032 ways of writing the sum
of two octads to give a duodecad. Thus the number of normal duodecads
must be at least 340032/132 = 2576.

4. Clatm: G has dimension 12.

Wy is a spanning set of G, and any two elements of Wa4 have even inter-
section. Thus G is contained in G, the dual with respect to the standard
inner product, so dim G < 12.

On the other hand, G contains at least 2576 duodecads, and 2! = 2048 <
2576 < 24im9 50 dim G > 11.

Thus dim G = 12.
5. Claim: Qe g

Because G has dimension 12 and is contained in its own dual, it must be a
totally singular subspace. (2 has inner product 0 with every even subset,
so it must be a member of G.

6. Claim: The weight distribution table above is correct.

We have accounted for the following codewords:

the empty codeword with weight 0;

at least 759 vectors of weight 8 (the original octads of Way)
at least 2576 vectors of weight 12

at least 759 vectors of weight 16 (2 — O for each octad O)
e a single vector of weight 24 (Q itself).

This gives a total of 4096 = 2!2 vectors accounted for, and we cannot
have any more because dim G = 12. Thus the table must be correct and
complete. ]

Corollary 4.2.3 G is a [24,12, 8] binary linear code.
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Proof This is immediate from the weight distribution table. |

Corollary 4.2.4 There is o unique [24,12,8] binary code up to isomorphism,
namely the Golay code Co4 constructed in section 3.

Proof We have shown that the octads of a Golay code form an S(5,8,24)
Steiner system, and that a Golay code is spanned by its octads. Since there is
only one S(5,8,24) Steiner system (up to isomorphism), this implies that there
can only be one Golay code (up to isomorphism). |

5 The large Mathieu groups

In the previous sections, we exhibited and showed the uniqueness of two com-
binatorical structures; namely, the S(5,8,24) Steiner system Wa4 and the ex-
tended binary Golay code Cz4. We also saw how the blocks of a S(5,8,24)
Steiner system span a Golay code, and how the words of weight 8 in a Golay
code form a Steiner system. Thus the automorphism groups of these two struc-
tures are isomorphic. Their common automorphism group is May4, the largest
Mathieu group.

5.1 Basic properties of My,

Definition 5.1.1 The Mathieu group Mas4 is the automorphism group of the
unique binary extended Golay code (or equivalently, the unique S(5,8,24) Steiner
system,).

This group is one of the sporadic simple groups. It contains the other four
Mathieu groups (and several other simple groups) as subgroups. We will now
investigate some of its properties. The most striking property of May is given
by the next theorem.

Theorem 5.1.2 My is a 5-transitive group of degree 2.

Proof Let G = My, acting on the S(5,8,24) Steiner system (2,S). If we
have any 3-set Y = {X;, X5, X3} C Q, then (Q2,8) can be reconstructed from
the projective plane A(Y') using the procedure in section 2.4. PSL3(4) is an
automorphism of (Q2,8) fixing X;, X» and X3, because PSL3(4) preserves the
hyperoval classes H; and Fano subplane classes F; used to construct (2,S). Thus
PSL3(4) is a 2-transitive subgroup of the pointwise stabilizer G(y). Hence G is
5-transitive. |

Theorem 5.1.2 is important, because groups of high transitivity are rare.
With the exception of the symmetric and alternating groups, there are only four
finite groups whose degree of transitivity is greater than 3. This result follows
from the Classification of Finite Simple Groups, because highly transitive groups
are necessarily almost simple groups. We will meet the other three groups in
this section and the next.

Corollary 5.1.3 My is transitive on octads.
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Proof My, is transitive on 5-sets, and each 5-set defines a unique octad. W

Definition 5.1.4 The Mathieu group May—; (for 0 < i < 3) is the pointwise
stabilizer of a set of i points in May (May is 5-transitive, so these groups are
specified up to conjugacy).

It is clear that Mas—; is (5 — ¢)-transitive for 0 < ¢ < 3. The groups Moay,
M>s3 and Moo (and sometimes Ma;) are collectively known as the large Mathieu
groups.

Theorem 5.1.5 My; = PSL3(4)

Proof Let G = Moy acting on (£2,S), Y = {X1, Xo, X3}, Moy = G(y). We
already know that PSL3(4) S G(y). The Steiner system (£2,S) can be recon-
structed from A(Y) in a different way for each re-ordering of the X;, i.e. given
any permutation o € S3, we can find a ¢ € G such that X;g = X;,. Thus
Gy /Gy is the full symmetric group S3, and so the pointwise stabilizer is an
index 6 subgroup of the setwise stabilizer. But PSLs(4) is an index 6 sub-
group of PT'L3(4), and PT'L3(4) = Gy, the setwise stabilizer. So, by comparing

orders, we must have that PSL3(4) = G(y). |
Theorem 5.1.6 The orders of the large Mathieu groups are those given in Table
4

Group Degree | Order

My =2 PSL3(4) | 21 20160 =21 x 20 x 48

Moo 22 443520 =22 x 21 x 20 x 48

M3 23 10200960 =23 x 22 x 21 x 20 x 48

Moy 24 244823040 =24 x 23 x 22 x 21 x 20 x 48

Table 4: The large Mathieu groups

Proof The group M, _; is the stabilizer of a point in M,, (we need Theorem
5.1.5), and:

_ISLs(@)] _ (42 = 1)(4* — 4)(4* — 42)

3 3x3

|PSL3(4)]

The Orbit-Stabilizer Theorem gives us our result. |

Lemma 5.1.7 Let O be an octad.

1. The pointwise stabilizer of O in May is elementary abelian of order 2%,
acting regularly on Q — O.

2. The setwise stabilizer of O has an action of Ag on O.

3. The setwise stabilizer of O is of the form 2*As.
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Proof Let G = M4, and let Y be a 3-subset of O. Then by Theorem 5.1.5,
G (0) is the pointwise stabilizer in PSL3(4) of the line O —Y in A(Y'). Because
PSL3(4) is 2-transitive, we may choose a particular line, say the set of points
with first co-ordinate zero. But then, the pointwise stabilizer in PSL3(4) is
isomorphic to the group of matrices of the form:

100
a 10 a,b € F, (28)
b 0 1

which is elementary abelian of order 2%. Tt is regular on 2 — O, as there is
precisely one group element which takes the point (1,0,0) to (1,a,b) for any
a,beFy.

The setwise stabilizer Go induces a 5-transitive action on O, and the point-
wise stabilizer of Y in this action is isomorphic to PSLy(4) (because this is the
setwise stabilizer in PSL3(4) of a line in the projective plane), which is isomor-
phic to A5. Thus the action of Go on O is isomorphic to Ag. Hence Go = 24 As.
|

Lemma 5.1.8 Let O be an octad, T a 2-subset of O, and H the pointwise
stabilizer of O in May. Then H acts reqularly on the set of octads which intersect
OimnT.

Proof From Table 1 on page 4, we know there are 16 octads which intersect
OinT.

Suppose that H does not act regularly on these 16 octads. Then because
|H| = 16, there must be a non-trivial h € H and an octad O’ such that h fixes
O' setwise and O'N O = T. Now, h has order 2 and has no fixed points outside
O (H acts regularly on Q — O by Lemma 5.1.7), so it induces a permutation of
cycle type 22 on O'. But h is in the setwise stabilizer of O’, so the action of h
should be an even permutation (Gor acts on O' like Ag). This is a contradiction.
|

Theorem 5.1.9 My, is transitive on duodecads.

Proof By the above lemma, the pointwise stabilizer H of an octad acts tran-
sitively on the set of octads which intersect an octad O; in a particular 2-subset.
By the proof of Theorem 4.2.2, any duodecad can be written as O; +Os (01, O,
octads) with |O;NO2| = 2. Since G acts transitively on octads (Corollary 5.1.3),
we deduce that G acts transitively on duodecads. |

5.2 Simplicity

To show that the large Mathieu groups are simple, we will need a result from
the theory of permutation groups (proved in [DM96] and chapter 9 of [Rot84]).

Theorem 5.2.1 Let G be a group acting faithfully and k-transitively (k > 2)
on a set X with | X| = n. Suppose the stabiliser G, of a single element is a
simple group. Then one of the following possibilities holds:

e (G is a simple group.
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e k=2 and n is a prime power.

e k=3 andn is a power of 2.

e k=23, n is not a power of 2, and G = S;

We will need a technical lemma for the proof of Theorem 5.2.1.

Lemma 5.2.2 If G is transitive on X and H<G is reqular, then for any x € X,
the induced action of G, on X — {z} and the conjugation action (indicated by
%) of G, on H — {1} are G-isomorphic.

Proof Let6: H — {1} - X — {z} be the map h — zh. Note that zh # z,
as h # 1 and H is regular. To show that 6 is a G;-morphism, we need to show
that for any g € G, and h € H — {1}:

(h*xg)8 = (h0)g (29)

But hxg = g 'hg, so (h*g)0 = x(g*hg) = xhg, since g—! stabilises . On

the other hand, (hf)g = xhg, so equation (29) holds, and 6 is a G,-morphism.
The map 6 is surjective (as H is transitive) and injective (if xh; = xhs, then
hihy' € H,, and H, = 1 as H is regular). Hence 6 is a G,-isomorphism. M

Proof of Theorem 5.2.1. Suppose G is not simple, and let H be a non-trivial
proper normal subgroup of G. Since G is at least 2-transitive, G is primitive.
Thus H is a normal subgroup of a primitive group, and so is transitive.

Let z be an arbitrary element of X. Then H NG, <G, and G, is simple
(all one-point stabilisers in G are isomorphic, since G is transitive). Therefore,
H NG, is either trivial or the whole of G,. Suppose it is the whole of G,. Then
we have G, C H C G. But G is primitive, so G, is a maximal subgroup of G,
which implies H = G, contradicting the transitivity of H. Thus H N G, must
be trivial for all x € X, and H must be regular, giving |H| = n.

Now, the action of G, on X —{z} is (k—1)-transitive, so the action of G, on
H — {1} by conjugation is (k — 1)-transitive (Lemma 5.2.2 says that the actions
are G -isomorphic). We note the following facts:

e Since k > 2, G, acts transitively on H — {1} by conjugation. Conjugation
is an automorphism, so all elements of H — {1} have the same order, which
must be a prime p. So H is a p-group, and so Z(H) is non-trivial. Since
it is a characteristic subgroup, we must have Z(H) = H. Thus H is
elementary abelian of order n = p*® for some s.

e If k > 3, then G, acts 2-transitively (and hence primitively) on H — {1}.
But for any h € H — {1}, {h,h™'} is a block, so it is either a singleton
or the whole of H. If h # h~! for some h € H — {1}, then |H| = 3,
whence H = Zj3. Otherwise h = h™! for all h € H — {1}, whence H is an
elementary abelian 2-group.

e If k > 4, then G, acts 3-transitively on H — {1}, so in particular |H| > 4,
so H must be a non-cyclic elementary abelian 2-group. H contains a
subgroup V = Zy ® Z, with generators h and h' say. Now the stabiliser
(Gg)n of hin G acts 2-transitively (and hence primitively) on H — {1, h}.
But {h', hh'} is a block for (G ), so H—{1,h} = {h',hh'}, andso H = V.
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Thus if k£ = 2, then H = Z7 for some n, and hence n = |H| is a prime power.
If k = 3, then either H = Z% for some n (so n is a power of 2) or |H| = 3, in
which case G = Ss, as the only 3-transitive subgroup of S3 is S3 itself. If k£ > 4,
then n = 4, and the only 4-transitive subgroup of Sy is Sy, so G =2 Sy. But then
G, =2 S3, which is not a simple group, which is a contradiction. Thus we have
accounted for all the possibilities. |

Corollary 5.2.3 Mss, My and Moy are simple groups.

Proof The stabilizer of one point in Myy is PSL3(4), which is a simple group
(by a well-known theorem of Jordan and Dickson: see Theorem 8.27 in [Rot84]).
M, is 3-transitive on 22 points. 22 is not a power of 2, and M, is clearly not
S3. Therefore, by Theorem 5.2.1, My, is simple.

The stabilizer of one point in Ms3 is Mss, which is simple. Moz is 4-transitive,
so by Theorem 5.2.1, M3 is simple.

The stabilizer of one point in Ma4 is Mas, so by the same argument, My, is
simple. |

6 The little Mathieu groups

Let M4 act on the Golay code Cay (a set of subsets of 2). We will investigate
the little Mathieu groups M;2 and M;; as certain stabilizers of sets in Moy.

6.1 Definitions and basic properties

Definition 6.1.1 The Mathieu group M, is the setwise stabilizer of a duodecad
in May. (May is transitive on duodecads by Theorem 5.1.9, so the duodecad cho-
sen does not matter.)

Choose a duodecad D and let D' = Q — D. For the rest of this section, M
acts on {2, sending D to D.
We now define a set system (Qp,Sp) by:

Qp = D; SDZ{DQOZOGS,|D00|:6} (30)
Theorem 6.1.2 (2p,Sp) is a S(5,6,12) Steiner system.
Proof Two octads of (2,S) never share a 5-element subset, so the same is

true for the blocks of Sp. On the other hand, the number of blocks in Sp is 132
(the number of ways D can be written as the sum of two octads, from the proof
of Theorem 4.2.2), which is the same as (152> / (g) (the number of 5-subsets
of D). Thus any 5-subset of D is contained in a unique block in Sp.

Theorem 6.1.3 M, acts transitively on the blocks of Sp.
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Proof Let By, B, be blocks in Sp contained in octads O; and O- respectively.
There exists octads O] and O} such that D = O, + O} and D = O, + 0}. Since
M, is transitive on octads, there exists g € Ms4 such that O;g = O,. Note
that O1g and O), intersect O in the same 2-subset (the 2-subset of O which is
outside the duodecad D), so by Lemma 5.1.8, there exists h € (Maq)(0,) such
that (Ojg)h = O). It is clear that O1gh = O, so Dgh = D. Thus gh € M
and Blgh = BQ. ||

Theorem 6.1.4 M5 acts faithfully and 5-transitively on the points of D. Its
order is |Mi2| =12 x 11 x 10 x 9 x 8 = 95040, so M1, is sharply 5-transitive.

Proof Let G = My,. Let By be a block in Sp, contained in the unique octad
01, and let O3 = D — 01, B, = DN O,. Then Bs is a block in Sp and D is the
disjoint union of By and Bs. Let T = O1 N Os; this is a 2-subset of Q — D.

Let H be the subgroup of G stabilizing both By and Bs. Since G(p,) acts
regularly on the octads which intersect O; in T, and G, has the action of Ag
on the points of O, we find that H is the setwise stabilizer of T" in G, ; and
this is Sg. So H induces faithful 6-transitive actions on B; and B>. Now H is
the setwise stabilizer of B; in Mj2, so the fact that M, is transitive on blocks
of Sp gives the faithful 5-transitive action on the points of D. The order of the
group follows directly from the Orbit-Stabilizer Theorem. |

So My is our second “non-trivial” 5-transitive group. As we remarked
earlier, there are no others (apart from alternating and symmetric groups).

An interesting corollary is that an outer automorphism of Sg is visible inside
Mi». Let Fy be any 4-subset of By, and let S = {Fy, F5, ..., Fg} be the sextet
containing Fj. The symmetric difference of two words of Ca4 is a word in Cay4, SO
the intersection of an octad and a duodecad can only have size 2, 4 or 6. Thus
for each 2 <i <6, |(Fy UF;) N D| € {2,4,6}, and hence |F; N D| € {0,2}.

Hence a 4-subset of B; corresponds to a partition of By into three 2-subsets,
so the Sg-actions of H on the two blocks must be inequivalent. (For exam-
ple, a 3-cycle of points in F; cannot change the partition of B, so it must
map to a permutation of shape 32.) An element g € M, that swaps the two
blocks induces an outer automorphism of Sg, and such a g exists because Mis
is transitive on blocks by Theorem 6.1.3. |

Definition 6.1.5 The Mathieu group M1 is the stabilizer of any point P € D
in Mis (up to conjugacy, it does not matter which point is chosen, as Mo is
5-transitive).

Corollary 6.1.6 Mi; acts faithfully on the points of D — {P}, and the action
is sharply 4-transitive. The order of the group is |M11] = 11 x 10 x 9 x 8 = 7920.

6.2 The 3-transitive action of M

Note that M;is is also the setwise stabilizer of D', and thus has a faithful 5-
transitive action on the 12 points of D'. However, the actions of My on D
and D' are not equivalent, because the stabilizer in M75 of a block B C D acts
6-transitively on the points of B and the points of D — B, whereas this same
stabilizer fixes a 2-subset of D’. In the same way that we found an outer auto-
morphism of Sg by swapping blocks of Sp, we can get an outer automorphism of
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M5 by swapping a duodecad with its complement, (which is certainly possible,
as Mo, is transitive on duodecads).

Let P be an arbitrary point of D. The stabilizer of P in M, is the group
Mji;. Consider the action of this group in the complementary duodecad D'
(think of My, as a subgroup of Sym(D')). This group cannot fix any point,
or else the actions of M;s on the two duodecads would be equivalent. Since 11
divides the order of Mj, there must be an element of order 11, i.e. an 11-cycle.
Since My, is not a point stabilizer, M;; is 2-transitive. Let K be the stabilizer
of two points of D’. Then |K| = 7920/(12 x 11) = 60, so K must contain an
element of order 5. Thus on the remaining 10 points, either K is transitive, or
it has two orbits of size 5. Suppose the latter. Then K contains an element x
of order 3 whose cycle decomposition can has at most one 3-cycle on each orbit,
which means z fixes at least 6 points of D'. But this is impossible, since My, is
sharply 5-transitive. So K is transitive on the remaining 10 points, and thus:

Theorem 6.2.1 Mi; has a 3-transitive action on 12 points. |

6.3 Simplicity

The main result in this section is from [Cha95].

Lemma 6.3.1 Let p be a prime, and let G be a transitive subgroup of S,. Let
mg be the number of Sylow p-subgroups, and let rg be the index of a Sylow
p-subgroup in its normalizer.

1. G has cyclic Sylow p-subgroups.
2. |G| = prgmg.
3. rg is the least positive residue of |G|/mga.

4. If mg > 1, thenrg > 1.

Proof Since G is transitive, p | |G|, but p?> does not divide p!, so the Sylow

p-subgroups of G must be cyclic of order p. This proves (1). Let P be a Sylow

p-subgroup; without loss of generality, we may assume that P = {(12...p)).
The normalizer Ng(P) of P consists of permutations of the form:

Ly — Lp, r—ax+b (a € Z,,b € Zyp)

There are p(p — 1) such transformations in S, so |Ng(P)| | p(p — 1), and hence
ra = |Ng(P)|/|P| is a factor of p — 1.
By Sylow’s Theorem, all the Sylow p-subgroups are conjugate, so:

|G| = |P|[Na(P) : P||G : Na(P)| = prama (31)

which proves (2). Moreover mg = 1 (mod p) and since r¢ | p — 1 (and in
particular, 0 < rg < p) we see that rg is the least residue (mod p) of |G|/p,
thus proving (3).

Finally, suppose mg > 1 and rg = 1. The group G is transitive, so by the
Orbit-Stabilizer Theorem, each point stabilizer G; has size |G|/p = mgrg =
mg. However, the number of elements of order p is mg(p — 1) =n — mg, so G
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has at most m¢ elements that fix any element at all. So all the point-stabilizers
must be equal. But then if g € G fixes any element, it fixes them all, so g = 1.
So all the point-stabilizers are trivial, and mg = 1, which is a contradiction.
This proves (4). |

Theorem 6.3.2 M is simple.

Proof We will use the notation of Lemma, 6.3.1. Let G = My, p = 11: we
have observed that G is a transitive subgroup of S, with order 7920. Note that
7920/11 = 720 = 5( (mod 11)), so by 6.3.1 we must have rg = 5, mg = 144.
Let H be a non-trivial normal subgroup of G: we want to show that H = G.
Since G is 4-transitive, G is primitive, so the normal subgroup H is transitive.
Hence P < H for some Sylow 11-subgroup P of G. By Sylow’s Theorems, all
the Sylow 11-subgroups of G are conjugate to P, so by normality, H contains
all the Sylow 11-subgroups of G. Thus myg = mg = 144, so by Lemma 6.3.1,
|H| = pmpura = 11 x 144 x rg. By Lagrange’s Theorem, |H| | |G|, so ru | ra =
5. But rg # 1 by 6.3.1, so rg = 5. Hence |H| = |G|, and H =G. |
A very similar argument could be used to prove that Mag is simple.

Corollary 6.3.3 Mjs is simple.

Proof Mji; is the one-point stabilizer of Mjs, and it is a simple group. By
Theorem 5.2.1, a 5-transitive group with a simple one-point stabilizer is simple,
and we have shown that Mj» is 5-transitive on 12 points. Hence M is simple.
[ |

7 The Leech lattice A

A lattice of dimension n is a free abelian subgroup of R™ with n generators. In
this final section, we will construct a particular 24-dimensional lattice A (the
Leech lattice) and examine Coy, its group of automorphisms. We will see some
connections with the Mathieu groups.

7.1 Construction and basic properties of A

We will follow the construction of A given in [Con99].

Let Q be the projective line on Fa3, with elements 0,1,...,22, 00 as usual.
Let Ca4 be the extended binary Golay code on €2, as constructed in section 3.2.
Label an orthonormal basis of R?* by e;, i € , and for any subset S C €, let

Vs = Y ies €i-

Definition 7.1.1 The Leech lattice A is the vector subspace of R** spanned
by the vectors of 2vo (where O is an octad in Cay), together with the vector
v — 4600.

Note that an n-dimensional lattice has an inner product inherited from the
Euclidean inner product of R™.

Lemma 7.1.2 For any two vectors x,y € A, the inner product x.y is divisible
by 8, and the inner product x.x is divisible by 16.
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Proof For any two of our generating vectors z, y, we can verify that z.y is
divisible by 8 (recall that two octads intersect in 0, 2, 4 or 8 places). By linearity,
this applies to any =,y € A. Now:

(z+y).(z+y) = (z.2) + (yy) +2(z.y) (32)

and since z.z is divisible by 16 for any generating vector z, and z.y is divisible
by 8 for any x,y € A, we must have that z.z is divisible by 16 for any x € A. B

Lemma 7.1.3 We have:
1. For any 4-set F, dvp € A.

2. For any two elements i,j € Q, 4e; — 4e; € A.

Proof

1. We know from Corollary 4.1.2 that we can find a sextet containing F. If
F; and F;, are two of the other 4-sets in the sextet, then F'U Fy, F U Fy
and F; U F, are octads. Thus:

4vrp = 2vrurR, + 2VFUFR, — 2VR U, (33)
and so 4vp € A.

2. Pick 3 elements k1, k2, k3 distinct from ¢ and j. Then let Fy = {4, k1, k2, k3 }
and Fy = {j, k1, k2, ks}. From the first part, we know that 4vp, and 4vp,
are in A, and thus 4e; — 4e; = 4vp, — 4vr, € A. | |

Theorem 7.1.4 A vector © = (%9, T1,--- ,2L22,Tco) With integral co-ordinates
is in A if and only if the following three conditions hold:

1. There exists an m such that for all i € Q, z; =m (mod 2).
2. For each k, the set {i € Q: x; = k (mod 4)} is a codeword in Ca4.
3. We have ) ;. x; = 4m (mod 8)

Proof All three statements are true for the generators of A, so hold for all
vectors z € A by linearity.

Conversely, suppose x € R?* satisfies all three conditions. To show z € A,
we will add vectors from A to z until we get a vector which is obviously an
element of A.

Let y = z + ¢(va — 4vso), where ¢ is an integer chosen so that all the co-
ordinates of y are even, and their sum is a multiple of 16.

Let A be the set of co-ordinates of y congruent to 2 (mod 4). Then A
is a codeword in Cy4, and since Co4 is spanned by its octads, we may write
A=0; A... AO, for octads O1,...,0p. Thenif z =y — 2vp, —... — 2vg,,,
then all the co-ordinates of z are divisible by 4, and the sum of the co-ordinates
is a multiple of 16.

But the space of such vectors is spanned by 4vp (for F a 4-set) and 4e; —4e;
(for 7 # j), and these vectors are in A by Lemma 7.1.3. Thus our original vector
£ must be in A. |

Corollary 7.1.5 A is a 24/-dimensional lattice.



7 THE LEECH LATTICE A 36

Proof From Theorem 7.1.4, we know that 8v; € A for each i € Q (24 elements),
and these vectors are clearly linearly independent over R. |

7.2 Types and shapes of vectors in A

In this section, we give a partial classification of the small vectors in A.

Let A(n) be the set of all vectors x € A satisfying .z = 16n. In this case,
we say x is of type n. Moreover, we say that x is of type ngp if it is of type n
and can be written as the sum of a vector of type a and a vector of type b.

The shape of a vector z € A is an expression of the form (a* -a3?-...-al"),
where n; is the number of co-ordinates of x taking the value |a;| (our definition
of the shape of a vector disregards the sign).

By a number of straightforward arguments using Theorem 7.1.4 and the
weight distribution table (Table 3 on page 25), we can count the number of
vectors of each shape. For example, to count the vectors of shape (2120'2),
observe that the co-ordinates taking the values £2 must be a word of weight
12 in C24 (2576 such), and there are 2'2 ways of choosing the signs for the first
11 co-ordinates, and the last sign is determined by the fact that the sum of
co-ordinates is congruent to 0 (mod 8). Thus there are 2'! x 2576 vectors of
this shape. All shapes of type < 4 are enumerated in Table 5 below (based on
Table 4.13 from [CS99]).

Type | Shape Number of vectors

0 (0%%) 1

1 none 0

2 (3T-1%3) 21224 98304
(28 - 016) 27759 97152
(.02 |22 (2 1104

3 (212 .012) 2112576 5275648
(33 -121) 212 . 234 8290304
(4-28.0'%) | 28.759.16 3108864
(5-123) 212.24 98304

4 (276 08) 21175916 24870912
(35 - 119) 212 254 174096384
(4* - 0%) 24 (244> 170016
(42 - 28 .014) | 29.759- 126 46632960
(4-2'2.01) | 2!2.2576-12 126615552
(5-32-121) 212-(234>-3 24870912
(6-27-016) | 27-759-8 777216
(8-0%) 21.24 48

Table 5: Shapes and types of small vectors in the Leech lattice
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Note that Theorem 7.1.4 implies that A(1) is empty. We say that A has
no roots. Thus the kissing number (number of equally-sized non-overlapping
spheres that all touch another sphere of the same size) for this lattice is given
by |A(2)] = 196560; this is in fact the optimal kissing number for 24 dimensions.
A proof of this remarkable fact is given in chapter 13 of [CS99].

7.3 The automorphism group Coy

Definition 7.3.1 The Conway group Cog is the group of Fuclidean congru-
ences of R2* that fiz the origin and preserve A. (That is, Coq is the automor-
phism group of A.)

If we fix a basis or R?4, the elements of Coop can be thought of as real
orthogonal (24 x 24) matrices. Since 8e; € A, we see that the entries of the
matrix must be rational with denominator dividing 8.

For any permutation 7 of 2, we can think of 7 as a Euclidean congruence,
with the action given by e;m = e;,. For any subset S C {2, define the congruence
€s by:

s = 34
cics {—ei ifies (34)

Let N be the set of congruences of the form wex for C € Caq, m € Sym(R).
A technical lemma:

Lemma 7.3.2 A € N if and only if A € Cop and e;\ = *e; for some i,j € Q.

Proof The forward implication is obvious. To prove the converse, consider the
matrix of A. Its ith row must contain +1 in the jth column and Os elsewhere.
Since A is orthogonal, the jth place of all the other rows must be 0:

[« ... ... 0 ... ... x|
* 0 *
0 +£1 0
* 0 *
[+ ... ... 0 ool ]

For any k € (, the vector 4e; + 4e, € A is of type 2, so its image under A must
be of type 2, and since it is 4 times the sum of rows ¢ and k in A, it must have a
co-ordinate 4. Table 5 then tells us that that (4e; + 4ex)) has shape (42022),
so the kth row of A contains a single co-ordinate +1 and the rest 0 (and again,
by orthogonality, all the other rows must have a 0 in this column).

Thus A = wec for some permutation 7w and some C C Q. We need to
show C € Cy4. Consider the vector (vg — 4ex)A. This is a vector of A, so
the co-ordinates congruent to 3 (mod 4) must be a codeword in Ca4. But these
co-ordinates are precisely the co-ordinates labelled by C. So C € Ca4. [ ]

Corollary 7.3.3 N is a subgroup of Cog of the form 2'2 Moy (split extension).
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Proof N is certainly a subset of Coy. To show that it is a subgroup, let
A, A2 € N and set A = /\1,\;1. To show A € N, note that A € Cog and
e1 A = xe; for some i. So by Lemma 7.3.2, A € N.

Now A = e for some permutation 7 and some set C' € Coy4. For an arbitrary
codeword S, (2vg)A has non-zero co-ordinates in the places of S, so 7 preserves
Ca4. Hence m € May, and since the subgroup {ec : C € Ca4} (isomorphic to 2'2)
in N is a normal subgroup of N, we have N = 22 My,. [ ]

Thus we see immediately that C'op has all the Mathieu groups as subgroups.
There are other interesting subgroups.

We cannot hope for Coy to be transitive on A, because it preserves the
lengths of vectors. However, it is not unreasonable to hope that it is transitive
on A(n) for particular values of n. This is certainly not the case for N, because
N preserves vector shape. Thus we suspect that IV is a proper subgroup of Coyg.

Let F be any 4-set. Then there is a sextet S = {F1,...,Fg} with F = F}.
Consider the map 7 given by:

1
S VF; for i € F; (35)

€N =¢€—35

and let £ = nep. It is clear that £ € N, since £ maps vectors of shape (8 - 02%))
to vectors of shape (4% - 02°). However:

Lemma 7.3.4 £ € Cog

Proof This is a straightforward, if messy, calculation. We will show that £
sends each generator of A to another element of A.

We will represent vectors by strings of 24 symbols, split into tetrads, and
where 7 is a shorthand for —n. Throughout the proof, we will relabel co-
ordinates as necessary.

For the generator z = vg — 4v., we have:

z=3111 1111 1111 1111 1111 1111
n=3111 1111 1111 1111 1111 1111
¢ = {3ITT 1111 1111 1111 1111 1111

3111 1111 1111 1111 1111 1111

where the two possibilities are representative for the different choices for F.
The other generators are of the form z = 2vp for an octad O. One of the
following possibilities holds:

1. O is the union of 2 tetrads of S.
x =2222 2222 0000 0000 0000 0000

Tn =2222 2222 0000 0000 0000 0000

ot = 2222 2222 0000 0000 0000 0000
~ 12222 2222 0000 0000 0000 0000
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2. O contains 2 points from each of 4 tetrads of S.

2 =2200 2200 2200 2200 0000 0000
zn =0022 0022 0022 0022 0000 0000

~J0022 0022 0022 0022 0000 0000
~ 10022 0022 0022 0022 0000 0000

3. O contains 3 points from 1 tetrad of S and 1 from each of the other 5.

x =2220 2000 2000 2000 2000 2000

rn=1113 1111 1111 1111 1111 1111

m§—{1113 1111 1111 1111 1111 1111

1113 1111 1111 1111 1111 1111

In each of these cases, by Theorem 7.1.4, € € A. Hence £ € Coyg. [ ]

Lemma 7.3.5 Coqg is transitive on A(2), A(3) and A(4)

Proof The orbits of N in A(2), A(3) and A(4) are determined exactly by the
vector shape, except for the shape (216 - 0%), where there are two orbits (see
Table 6).

Orbit | Typical vector | Size of orbit
(215.0%)T: | 0000 0000 2222 2222 2222 2222 | 2'1.759
(216-0%)7: | 0000 0000 2222 2222 2222 2222 | 2 .759-15

Table 6: Vectors of shape (26 - 08) under N

The orbits of N on A(n) (for n = 2,3,4) fuse under the action of the whole
group. To show this, we choose a suitable vector z from each N-orbit, and see
that z¢ is in a different N-orbit. The details are given in Table 7. Note that the
vectors in the table are in fact in A (for a suitable labelling of the co-ordinates).
As before, we show the six textrads of a sextet separately. |

By Lemma 7.3.2, the set {+8e; : i € Q} is a block of imprimitivity for the
action of Cog on A(4). The other blocks (sets of 48 vectors in 24 mutually
orthogonal pairs) are called co-ordinate frames.

Theorem 7.3.6 Every vector x € A is congruent (mod 2A) to ezactly one of
the following:

e The vector 0
e Each vector of a unique pair x, —z, with x € A(2)
e FEach vector of a unique pair x, —z, with x € A(3)

e Each of the 48 vectors of a co-ordinate frame in A(4)
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N-orbits z and x&

A(2) | (28-0%%) 2220 2220 2000 2000 2000 2000
3L .123) 1113 1111 1111 1111 1111 1111
4%.0%2) 4000 4000 0000 0000 0000 0000
28 .016) 2222 2222 0000 0000 0000 0000

A(3) | (212-012) 2220 2220 2220 2000 2000 2000
3% .123) 1113 1113 1113 1111 1111 1111
212.012) 2222 2200 2200 2200 2200 0000
4-28.0%%) | 4000 2200 0022 0022 0022 0000
5-123) 5111 1111 1111 1111 1111 1111
3% .12 1333 1111 1111 1111 1111 1111

A(4) | (215-0%)F 2220 2220 2220 2220 2220 2000

(

(

(

(

(

(

(

(

(

( )

( ) 000
( ) 1113 1113 1113 1113 1113 1111
(2705~ [ 2220 2220 2220 2220 2220 2000
( )

( )

( )

(

(

(

(

(

(

(

(

(

(

1131 1113 1113 1113 1113 1111
4000 4000 4000 4000 0000 0000
216.08)~ 2222 2222 2222 2222 0000 0000
42.28.01%) 12220 2004 2004 2000 2000 2000
35.119) 1113 1331 1331 1111 1111 T111
4-212.011) 12220 2220 2220 2000 2000 2004
35.119) 1113 1113 1113 1111 1111 3113
5-32-12T) [ 5111 1111 3111 3111 1111 1111
35 -119) 1333 1111 3111 3111 1111 1111
6-27-0%) [ 6220 2000 2000 2000 2000 2000
5-32.1%1) | 3153 1111 1111 1111 1111 1711
8- 0%) 8000 0000 0000 0000 0000 0000
4* . 0%0) 4444 0000 0000 0000 0000 0000

Table 7: Fusion of N-orbits under Cog

Proof Firstly, we will show that the listed classes do not overlap. Suppose we
have z,y € A of type < 4 which are congruent (mod 2A), and with z # +y.
Then z — y and x + y are non-zero in 2A; say £ —y = 2u,  + y = 2v, u,v € A.
Now u and v are non-zero, so have type > 2. Hence = + y has type > 8. But
then 128 < (zty).(z ty) =z.2x+y.y £2(zy) <128+ 2(z.y), whence z.y =0
(so = and y are orthogonal) and z.x = y.y = 64 (so z,y € A(4)). So z and y
are in the same co-ordinate frame of A(4), and so the classes do not overlap.
Secondly, note that the number of classes is:

A@I | AG) | |AM)]

1+ 2 2 48

(36)

which is precisely 224 = |A/2A|, by direct calculation from Table 5 on page 36.
So these are precisely the equivalence classes (mod 2A). |

Theorem 7.3.7 |Coo| = 8315553613086720000 = 222 -39 - 54 -72.11-13-23

Proof We observe:
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e The orbit of the vector 8e., in Cog is A(4), by Theorem 7.3.5.

e The orbit of the vector 8e,, in N has size 48, and consists of the vectors
+8e; for each i € Q, and any element of Coy taking 8e,, to one of these
isin N, by Lemma 7.3.2.

e The stabilizers of 8¢, in N and Cog are the same, also by Lemma 7.3.2
Thus by the Orbit-Stabilizer Theorem, we have:

E|
13

By Table 5, we calculate |A(4)| = 398034000. By Corollary 7.3.3, we know
N = 2'2My,, and from Table 4 on 28, we know | Mas| = 24 x 23 x 22 x 21 x 48.
Thus equation (37) gives the result. |

[Coo| = |A(4)] (37)

7.4 Some sporadic groups involved in Co,

Cog has centre Z = {£I}, where I is the (24 x 24) unit matrix. We define
Cor =Coy/Z.

We define Cos to be the stabilizer in Cog of a vector z3 € A(2). Because of
the transitivity of Cop on A(2), the choice of 22 does not matter. Similarly, we
define C'os to be the stabilizer of a vector z3 € A(3).

The groups Co;, Coy and Cos are called the Conway groups after their
discoverer. They are sporadic simple groups; a proof of their simplicity is given
in [Asc94] chapter 9. We have enough information to determine their orders.

Theorem 7.4.1 We have:
e |Coy| = 22139547211 - 13 - 23 = 4157776806543360000
o |Coo| = 21835537 11 - 23 = 42305421312000
o |Cos| =21037537- 11 - 23 = 495766656000

Proof The orders are respectively |Cog|/2, |Cog|/|A(2)| and |Coo|/|A(3)]. We
know the order of Coy from Theorem 7.3.7, and we can calculate

IA(2)| = 196560

|A(3)] = 16773120

from Table 5 on page 36. |

There are other sporadic groups involved in Coy. It is possible to show that
Coy is transitive on vectors of type 5 and 7. The stabilizer of a vector of type
5 is McL.2 (where McL is a sporadic simple group with order |Cog|/|A(5)|
discovered by McLaughlin). The stabilizer of a vector of type 7 is the Higman-
Sims sporadic group HS, with order |Cog|/|A(7)|. Details are given in [Con99]
and [Asc94].
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